Enhanced Li-ion conductivity of polymer electrolytes with selective introduction of hydrogen in the anion

Heng Zhang, Uxue Oteo, Haijin Zhu, Xabier Judez, Maria Martinez-Ibañez, Itziar Aldalur, Eduardo Sanchez-Diez, Chunmei Li, Javier Carrasco, Maria Forsyth, Michel Armand

First published: 16 January 2019 | https://doi.org/10.1002/ange.201813700

Abstract

The anion chemistry of lithium salts plays a pivotal role in dictating the physicochemical and electrochemical performance of solid polymer electrolytes (SPEs), thus affecting the cyclability of all solid-state lithium metal batteries (ASSLMBs). Bis(trifluoromethanesulfonyl)imide anion (TFSI–) has long been studied as the most promising candidate for SPEs; however, the Li-ion conductivities of the TFSI-based SPEs remain still low (Li-ion transference number, \(\sim 0.2 \)). In this work, we report new H-containing anions, conceived on the basis of theoretical considerations, as an electrolyte salt for SPEs. SPEs comprising H-containing anions achieve higher Li-ion conductivities than the TFSI-based ones, and those anions are electrochemically stable for various kinds of ASSLMBs (Li-LiFePO4, Li-S and Li-O2 batteries). This opens a new avenue for designing safe and high-performance ASSLMBs in the future.