Exceptionally stable polymer electrolyte for a lithium battery based on cross-linking by a residue-free process

Jean-Christophe Daiglea, Yuichiro Asakawab, Ashok Vijc, Pierre Hovingtonb, Michel Armandb, Karim Zaghiba

a Institut de recherche d’Hydro-Québec (IREQ), Unité Stockage et Conversion de l’Énergie (SCE), 1800, Lionel-Boulet blvd., Varennes, Qc., Canada
b Sony Corporation, 1-7-1 Konan, Minato-ku, Tokyo 108-0075, Japan
c CIConergigune – Parque Tecnológico, C/Albert Einstein 48, CP 01510 Minano, Alava, Spain

Received 19 July 2016, Revised 12 September 2016, Accepted 23 September 2016, Available online 29 September 2016

Highlights

- Synthesis of cross-linked copolymers of glycidyl methacrylate (GMA) as SPE.
- Synthesis poly (ethylene glycol) methyl methacrylate (PEGMA) as SPE.
- Fabrication of membranes by residue-free eco-friendly process.
- The Young Modulus of the membrane is as high as 1 GPa.
- Cell exhibits a good capacity (151 mAh g-1) at C/6, 97% after 80 cycles.

Abstract

In this paper, we report the synthesis of cross-linked copolymers of glycidyl methacrylate (GMA) and poly (ethylene glycol) methyl methacrylate (PEGMA) for use as solid polymer electrolytes (SPE). The cross-linking is performed with volatile ethylene diamine, thus preventing the accumulation of undesirable precursors in the final membrane. The structure of the cross-linked polymer electrolyte was investigated by 13C solid NMR and its physical properties were examined by DSC, TGA and stress-strain tests. The ionic conductivities were determined by AC impedance, which showed that the SPEs have good conductivities (10-5 S cm-1) at 80 °C. The highest capacity measured with these polymers was 151 mAh g-1 at C/6 and 80 °C for a LFP/SPE/Lithium battery. The retention capacity is high, at 97% after 80 cycles at different rates of cycling. The Young’s modulus of the membranes is as high as 1 GPa. The SEM images showed no evidence of lithium dendrites and no degradation after cycling. Therefore, the polymer is a good candidate for battery operation over a long time. Especially important is the ability of this polymer to prevent growth of dendrites on the Li-metal electrode.

http://dx.doi.org/10.1016/j.jpowsour.2016.09.139