Na$_{2.5}$Fe$_{1.75}$(SO$_4$)$_3$/Ketjen/rGO: An advanced cathode composite for sodium ion batteries

A. Goñi a, b, A. Iturrorndobeitia a, I. Gil de Muro a, b, L. Lezama a, b, T. Rojo a, c, *

a Departamento de Química Inorgánica, Universidad del País Vasco UPV/EHU, P.O. Box 644, 48080, Bilbao, Spain
b BCMATERIALS, Ibasoabal Bidea 500, Parque Científico y Tecnológico de Bizkaia, 48160, Derio, Spain
c CIC energigune, Parque Tecnológico de Álava, Albert Einstein 48, 01510, Milán, Álava, Spain

HIGHLIGHTS
- Advanced cathode composite.
- Na$_{2.5}$Fe$_{1.75}$(SO$_4$)$_3$/Ketjen/rGO.
- Good rate capability.
- Great cycling stability.
- SEI layer.

ABSTRACT
An advanced cathode composite Na$_{2.5}$Fe$_{1.75}$(SO$_4$)$_3$/Ketjen/rGO for sodium ion batteries has been prepared, joining together the excellent electrochemical properties of the three components: off stoichiometric iron sulfate alluaudite, Ketjen Black carbon and reduced graphene oxide (rGO).

This electrode material has been exhaustively characterized by XRD, thermogravimetric analysis, Raman spectroscopy and SEM and TEM microscopy. The study has demonstrated that a high quality electrode material has been designed containing a porous sulfate core properly coated by interwoven rGO fibers and Ketjen Black nanoparticles. The electrochemical study has revealed an excellent performance providing specific capacities close to the theoretical one at 1C. Additionally, this composite has shown a very good rate capability and a great cycling stability for at least 200 cycles maintaining a coulombic efficiency of 96%.

The post mortem analysis, which includes EPR and XPS measurements, has demonstrated that the carbonaceous coating on the composite generates a stable and protective SEI layer over the active material guaranteeing a successful performance during a long cycle life.

© 2017 Elsevier B.V. All rights reserved.

Acknowledgment
This work was financially supported by the Ministerio de Economía y Competitividad (MAT2016-78266-P) and Gobierno Vasco/Eusko Jaurlaritza (CICE2017). The authors thank for technical and human support provided by SCIker of UPV/EHU and European funding (ERDF and ESF). A.I. thanks the Gobierno Vasco/Eusko Jaurlaritza for a fellowship.