Novel Complex Stacking of Fully-Ordered Transition Metal Layers in \(\text{Li}_4\text{FeSbO}_6 \) Materials

Eric McCulla,†‡,§,|| Artem Abakumov,† Gwendale Rousse,†‡,§,# Marine Reynaud,▶
Moulay Tahar Sougrati,‡,§,◊ Bojan Budic,‖ Abdelfattah Mahmoud,◆ Robert Dominko,‖
Gustaaf Van Tendeloo,⊥ Raphael P. Hermann,◆ and Jean-Marie Tarascon*,†,§

†Chimie du Solide et de l’Energie, FRE 3677, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
‡ALISTORE-European Research Institute, FR CNRS 3104, 80039 Amiens, France
§Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
‖National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
⊥EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
◆Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, F-75005 Paris, France
◊CIC Energigune, Parque Tecnologico de Álava, Calle Albert Einstein 48, 01510 Miñano (Álava), Spain
‖Institut Charles Gerhardt, CNRS UMR 5253, Université Montpellier 2, 34 095 Montpellier, France
◆Julich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany

Supporting Information

ABSTRACT: As part of a broad project to explore \(\text{Li}_4\text{MM'}\text{O}_6 \) materials (with \(\text{M} \) and \(\text{M}' \) being selected from a wide variety of metals) as positive electrode materials for Li-ion batteries, the structures of \(\text{Li}_4\text{FeSbO}_6 \) materials with both stoichiometric and slightly deficient lithium contents are studied here. For lithium content varying from 3.8 to 4.0, the color changes from yellow to black and extra superstructure peaks are seen in the XRD patterns. These extra peaks appear as satellites around the four superstructure peaks affected by the stacking of the transition metal atoms. Refinements of both XRD and neutron scattering patterns show a nearly perfect ordering of Li, Fe, and Sb in the transition metal layers of all samples, although these refinements must take the stacking faults into account in order to extract information about the structure of the TM layers. The structure of the most lithium rich sample, where the satellite superstructure peaks are seen, was determined with the help of HRTEM, XRD, and neutron scattering. The satellites arise due to a new stacking sequence where not all transition metal layers are identical but instead two slightly different compositions stack in an AABB sequence giving a unit cell that is four times larger than normal for such monoclinic layered materials. The more lithium deficient samples are found to contain metal site vacancies based on elemental analysis and Mössbauer spectroscopy results. The significant changes in physical properties are attributed to the presence of these vacancies. This study illustrates the great importance of carefully determining the final compositions in these materials, as very small differences in compositions may have large impacts on structures and properties.

Received: December 8, 2014
Revised: February 11, 2015
Published: February 12, 2015

DOI: 10.1021/cm504500a
Chem. Mater. 2015, 27, 1699–1708