Novel Pr$_{0.6}$Sr$_{0.4}$Fe$_{0.8}$Co$_{0.2}$O$_3$:Ce$_{0.8}$Sm$_{0.2}$O$_2$ composite nanotubes for energy conversion and storage

Ricardo Pinedoa, Idoia Ruiz de Larrañendia, Nagore Ortiz-Vitorianoa, Izaskun Gil de Muroa, Teofilo Rojoa,b,*

a Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao, Spain
b CIC energiGUNE, Parque Tecnológico, Albert Einstein, 48, 01510 Miñano, Álava, Spain

ARTICLE INFO

Article history:
Received 17 August 2011
Received in revised form 20 October 2011
Accepted 24 October 2011
Available online 3 November 2011

Keywords:
Solid oxide fuel cell
Nanomaterial
Perovskite
Fluorite
Electrochemical impedance spectroscopy

ABSTRACT

One of the most important challenges for further development of solid oxide fuel cells is to design new electrodes which operate at intermediate temperatures. In this sense, the formation of nanostructures of the Pr$_{0.6}$Sr$_{0.4}$Fe$_{0.8}$Co$_{0.2}$O$_3$:Ce$_{0.8}$Sm$_{0.2}$O$_2$ composite and their characterization have been carried out. These nanostructures have been synthesized using polymeric membranes with 0.1 μm pore size as templates. The electronic microscopy has been used in order to confirm the dimensions of the obtained nanotubes with a wall thickness of 20 nm. The impedance spectroscopy measurements reveal the good performance of these nanostructured materials and the effect that the nanostructures and the addition of a pure ionic conductor have on the electrochemical performance. The synthesized nanostructured composite exhibits an area specific resistance (ASR) value smaller than that obtained for the sample without the nanostructured morphology together with the addition of the pure ionic conductor.

© 2011 Elsevier B.V. All rights reserved.