Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects

Dong Zhou,1,3 Devaraj Shanmukaraj,2,3 Anastasia Tkacheva,1 Michel Armand,2,* and Guoxiu Wang1,*

1Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
2CIC Energigune, Parque Tecnológico de Álava, Miñano 01510 Spain
3These authors contributed equally

DOI: https://doi.org/10.1016/j.chempr.2019.05.009 , September 12, 2019

Summary

Polymer electrolytes have attracted great interest for next-generation lithium (Li)-based batteries in terms of high energy density and safety. In this review, we summarize the ion-transport mechanisms, fundamental properties, and preparation techniques of various classes of polymer electrolytes, such as solvent-free polymer electrolytes (SPEs), gel polymer electrolytes (GPEs), and composite polymer electrolytes (CPEs). We also introduce the recent advances of non-aqueous Li-based battery systems, in which their performances can be intrinsically enhanced by polymer electrolytes. Those include high-voltage Li-ion batteries, flexible Li-ion batteries, Li-metal batteries, lithium-sulfur (Li-S) batteries, lithium-oxygen (Li-O₂) batteries, and smart Li-ion batteries. Especially, the advantages of polymer electrolytes beyond safety improvement are highlighted. Finally, the remaining challenges and future perspectives are outlined to provide strategies to develop novel polymer electrolytes for high-performance Li-based batteries.

Graphical Abstract