Solid State Ionics Available online 7 August 2017 In Press, Corrected Proof ## Stable cycling of lithium metal electrode in nanocomposite solid polymer electrolytes with lithium bis(fluorosulfonyl)imide Xabier Judez ^a, Michal Piszcz ^a, Estibaliz Coya ^a, Chunmei Li ^a, Itziar Aldalur ^a, Uxue Oteo ^a, Yan Zhang ^a, Wei Zhang ^a, ^b, Lide M. Rodriguez-Martinez ^a, Heng Zhang ^a [∠] , Michel Armand ^a - ^a CIC Energigune, Parque Tecnológico de Álava, Albert Einstein 48, 01510 Miñano, Álava, Spain - b Ikerbasque Basque Foundation for Science, 48013 Bilbao, Spain Received 17 February 2017, Revised 27 June 2017, Accepted 26 July 2017, Available online 7 August 2017. https://doi.org/10.1016/j.ssi.2017.07.021 ## Abstract Nanocomposite solid polymer electrolytes (NSPEs) comprising lithium salt based on two representative sulfonylimide anions (i.e., bis(fluorosulfonyl)imide ([N(SO₂CF₃)₂]⁻, FSI⁻) and bis(trifluoromethanesulfonyl)imide ([N(SO₂CF₃)₂]⁻, TFSI⁻)) have been prepared by simply dissolving the corresponding lithium salt in poly(ethylene oxide) matrix in the presence of inert nano-sized Al₂O₃ fillers. The physicochemical and electrochemical properties of the FSI- and TFSI-based NSPEs are investigated, in terms of phase transition, ion transport behavior, chemical and electrochemical compatibility with Li metal. With the addition of nano-sized Al₂O₃ fillers, a significant improvement in chemical and electrochemical compatibility with Li metal has been observed in both the FSI-and TFSI-based NSPEs. Particularly, the symmetric cell using the FSI-based NSPE can be continuously cycled for > 1000 h at 70 °C. The Li | LiFePO₄ cell with the FSI-based NSPEs shows good cycling stability and capacity retention. These promising results make them attractive electrolytes for safe and stable rechargeable Li metal batteries.