Two-Dimensional Unilamellar Cation-Deficient Metal Oxide Nanosheet Superlattices for High-Rate Sodium-Ion Energy Storage

Pan Xiong,1,2 Xiuyun Zhang,3,4 Fan Zhang,1 Ding Yi,4 Jingjiang Zhang,1 Bing Sun,1 Huajun Tian,1 Devaraj Shanmukaraj,5 Teofilo Rojo,5* Michel Armand,5* Renzhi Ma,2 Takayoshi Sasaki,2* and Guoxiu Wang1*

1Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
2International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
3College of Physical Science and Technology, Yangzhou University, Yangzhou, 225002, China
4Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
5CIC ENERGIGUNE, Parque Tecnológico de Álava, Miñano 01510, Spain

ACS Nano, Just Accepted Manuscript
DOI: 10.1021/acsnano.8b06206
Publication Date (Web): November 14, 2018
Copyright © 2018 American Chemical Society

Abstract

Cation-deficient two-dimensional (2D) materials, especially atomically thin nanosheets are highly promising electrode materials for electrochemical energy storage that undergo metal ion-insertion reactions, yet have rarely been achieved thus far. Here, we report a Ti-deficient 2D unilamellar lepidocrocite-type titanium oxide (Ti0.87O2) nanosheet superlattice for sodium storage. The superlattice composed of alternately restacked defective Ti0.87O2 and nitrogen-doped graphene monolayers exhibits an outstanding capacity of ~490 mA h g⁻¹ at 0.1 A g⁻¹, an ultralong cycle life of more than 10,000 cycles with ~0.00058% capacity decay per cycle, and especially superior low-temperature performance (100 mA h g⁻¹ at 12.8 A g⁻¹ and ~5 °C), presenting the best reported performance to date. A reversible Na⁺ ion intercalation mechanism without phase and structural change is verified by first-principles calculations and kinetics analysis. These results herald a promising strategy to utilize defective 2D materials for advanced energy storage applications.