Variations on Li$_3$N protective coating using ex-situ and in-situ techniques for Li$^\circ$ in sulphur batteries

Marya Baloch a, b, Devaraj Shanmukaraj a, b, Oleksandr Bondarchuk a, Emilie Bekaert a, Teofilo Rojo a, b, Michel Armand a

Received 2 January 2017, Revised 15 June 2017, Accepted 22 June 2017, Available online 14 July 2017.

Lithium sulphur batteries are promising candidates for upcoming/future energy storage systems due to their theoretical specific energy (2500 Wh kg$^{-1}$). Poor cycle life and low capacity retention are main issues restraining their commercialization. To achieve high energy density, metallic lithium or concentrated alloy negatives are required wherein both the challenge of high reactivity leading to degradation, and safety issues have to be dealt with. LiNO$_3$ has been reported as an electrolyte additive to produce passivation layer on the metallic lithium anode. However, the passivation layer thickness cannot be controlled. In order to have similar passivation effect with controlled thickness and to avoid undesirable reaction on the surface of the lithium metal, Li$_3$N protective layers has been investigated. This study demonstrates the effect of coating techniques and feasibility of Li$_3$N protective layers for Li metal anodes in Li-S cells using just a standard sulphur/carbon composite electrode, thereby independent from the effects of binders or any porous cathode architecture. A first approach to study the surface morphology of Li with Li$_3$N layers in Li-S batteries has been made. Improved cycling efficiency and good lithium plating/stripping characteristics were observed with a smooth surface morphology of Li metal. A viable in-situ approach of depositing Li$_3$N layer on the Li metal anode using [(CH$_3$)$_3$SiN$_3$] as electrolyte additive is proposed.